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New Universal Relations for Liquid-Vapor Phase
Equilibrium
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Universal relations between the saturation pressure pLV and the value of
.=2hLV�2&LV& pLV , where 2hLV is the latent heat of evaporation and 2&LV is
the volume change of the vapor-liquid transition, and the product of the
orthobaric densities \L and \V of the liquid and vapor at coexistence have been
discovered. In the temperature range from the triple point to T�Tcr0.9, these
relations obey a power law with universal exponents. At temperatures
0.9<T�Tc�1, pLV and . depend linearly on ln(\L \V) with retention of univer-
sality for substances of different nature.

KEY WORDS: heat of evaporation; orthobaric densities; saturation pressure;
universal relation; vapor-liquid phase equilibrium.

1. INTRODUCTION

The pressure pLV of a pure substance at a liquid(L)-vapor(V) phase equi-
librium is only a function of the temperature, pLV= f (T ), but this rela-
tionship has a complicated form. One can use, for example, the following
approximation [1],

log pLV=A+BT &1+C log T+DT 6 (1)

where A, B, C, and D are system-dependent coefficients. In polynomials of
type (1), the main term BT &1 with B<0 corresponds to an integration of
the Clausius�Clapeyron equation at constant evaporation enthalpy 2hLV

and with substitution of 2vLV=&V&&Lr&V=RT�pLV , where &LV repre-
sents the molar volume of the vapor and liquid phase at coexistence.
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One could assume the existence of an indirect simple relation of the
form pLV=.[x(T )], where x is one of the properties of a two-phase
system in equilibrium. For this purpose, the Van der Waals equation
proved to be useful:

p=
RT

&&b
&

a
&2 (2)

For a fluid with such an equation of state the molar internal energy u and
the entropy s can be written as [2]

u=cVT&
a
&

(3)

s=cV ln T+R ln(&&b) (4)

where cV is the molar isochoric heat capacity.
Equations (3) and (4) make it possible to obtain the chemical potential

+=u&Ts+ p&. The condition of phase equilibrium

+L(T, p)= +V(T, p) (5)

leads to a dependence of the equilibrium pressure pLV on the temperature
and the specific volumes &L of the liquid and &V of the vapor on the saturation
curve:

pLV=
RT

&V&&L

ln
&V&b
&L&b

&
a

&L&V

(6)

By making simple transformations in Eq. (6) and with the orthobaric
densities, \L=1�&L and \V=1�&V , we obtain

pLV=a\L \V {RT
a

ln(\L �\V)+ln[(1&b\V)�(1&b\L)]
\L&\V

&1= (7)

The structure of Eq. (7) shows that for the Van der Waals equation the
saturation pressure is mainly determined by the value of a\L \V , i.e., the
product of the orthobaric densities of the liquid and vapor. If we use
experimental data for different substances, we find that the product
T (ln(\L �\V)+ln[(1&b\V)�(1&b\L)])�(\L&\V) in the range from the
triple point to the critical point varies only slightly; for example, for
nitrogen by 130, for carbon dioxide by 140, for mercury by 50, whereas
the product \L \V increases by four orders of magnitude.
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2. RELATION BETWEEN SATURATION PRESSURE AND
ORTHOBARIC DENSITIES

Having obtained an interesting result for the Van der Waals fluid, we
decided to verify whether the relation pLV= f (\L \V) applies in a general
sense. For this purpose we considered experimental data for the saturated
vapor pressure pLV and the orthobaric densities \L and \V of a large group
of substances. It turns out that a power law of the form

pLV=A(\L \V)n (8)

with nr1.1 adequately approximates the experimental data in the tem-
perature range from the triple point to T�Tcr0.9, where Tc is the critical
temperature. In terms of pressure the upper boundary of the range
corresponds to p�pc=0.5, where pc is the critical pressure. Figure 1 shows
on a logarithmic scale the relation between the saturation pressure and the
product \L \V for water and mercury at various temperatures. Deviations
from linearity in Fig. 1 are observed only in the vicinity of the critical
point.

Fig. 1. Saturation pressure pLV as a function of the product of
liquid and vapor densities \L \V at coexistence: 1, water; 2, mercury.
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To bring the power law expressed by Eq. (8) into a universal form, we
introduce quantities reduced in terms of the critical parameters pc , Tc , \c :

p~ LV= pLV �pc , \~ L=\L �\c , and \~ V=\V �\c

and rewrite Eq. (8) as

p~ LV=A� (\~ L \~ V)n, where A� =Ap&1
c \2n

c (9)

Figure 2 shows data for substances of different nature in dimensionless
variables. Values of n, A� for these substances obtained with the use of the
method of least squares are presented in Table I. Figure 2 and Table I
elucidate the universality of the relation between the product of orthobaric
densities and the saturation pressure over a wide temperature range. For
Eq. (9) one can assume, in general that, n=1.13\0.02, A� =1.3\0.1.

Fig. 2. Reduced pressure p~ LV on the saturation line as a function
of the value of \~ L \~ V for different substances: 1, argon; 2, xenon;
3, oxygen; 4, nitrogen; 5, chlorine; 6, carbon dioxide; 7, ammonia;
8, water; 9, methane; 10, hexane; 11, benzene; 12, diethyl ether;
13, mercury; 14, cesium; 15, critical point.
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Table I. Values of the Parameters in Eqs. (9) and (14)

Substance n A� k D* Ref.

Argon 1.15 1.25 0.97 0.98 [3]
Xenon 1.14 1.23 0.97 1.00 [3]
Oxygen 1.13 1.23 0.99 0.98 [6]
Nitrogen 1.13 1.23 0.97 0.99 [7]
Chlorine 1.13 1.30 0.98 0.98 [4]
Carbon dioxide 1.12 1.31 0.95 1.00 [4]
Ammonia 1.12 1.38 0.98 0.97 [4]
Water 1.10 1.33 0.97 0.98 [8]
Methane 1.14 1.25 0.98 1.01 [9]
Hexane 1.11 1.34 0.97 1.01 [4]
Benzene 1.14 1.40 0.97 0.99 [4]
Diethyl ether 1.11 1.35 0.96 1.01 [4]
Mercury 1.14 1.13 0.99 �� [4, 5]
Cesium 1.14 1.09 1.00 0.99 [10]

As we approach the critical point, the character of the relation
changes, but its universality is retained. In the range 0.9<T� �1, where
T� =T�Tc , the experimental data can be represented by

pLV=B ln(\L \V)+C (10)

or in terms of dimensionless variables,

p~ LV=ln(\~ L \~ V)m+1 (11)

with m=0.65. We note as a curious observation that the exponent m is
close to twice the value of the critical exponent ; for the asymptotic power
law of the coexisting densities. Figure 3 shows this relation for a number
of substances.

Equations (8)�(11) refer to thermal properties of substances at two-
phase liquid-vapor equilibrium. We suggest that they should be called
multiplicative relations as on the right-hand side of the equalities there is
a product of the orthobaric densities of the two phases.

3. RELATION WITH CALORIC PROPERTIES

The question arises whether it is possible to present the behavior of
caloric quantities, such as, the entropy change 2sLV=sV&sL , the enthalpy
change 2hLV=hV&hL=T 2sLV , or the internal energy change 2uLV=
2hLV& pLV 2&LV , similarly as a function of the product \L \V .
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Fig. 3. Reduced pressure p~ LV on the saturation line as a function of
the value of \~ L \~ V for various substances in the range 0.9<T� �1. The
symbols are the same as in Fig. 2. The solid line represents Eq. (11).

One can again obtain a useful indication by turning to the Van der
Waals equation. If we introduce the entropy, given by Eq. (4), into the
condition of phase equilibrium, given by Eq. (5), and take into account the
independence of the heat capacity on the volume, we obtain

pLV=T
2sLV

2&LV

&a\L \V

or

2hLV

2&LV

& pLV=a\L \V

(12)
2uLV

2&LV

=a\L \V
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The clue is the fact that for the Van der Waals fluid the value of

.=
2hLV

2&LV

& pLV (13)

is proportional to the product \L \V. We have calculated the values of .
and of \L \V for a number of substances over a wide temperature range
from vapor-liquid equilibrium data. Assuming in the general case a power
law of the form:

.=D(\L \V)k (14)

we have plotted them on a logarithmic scale. Figure 4 presents such a con-
struction for water, cesium, argon, and mercury. In all cases the points fall
on a straight line with a slope kr1 for T�Tc�0.9.

It is convenient to make a transition to dimensionless variables in
Eqs. (13) and (14) by considering a certain reference point on the satura-
tion line. We have chosen the point p1=0.1pc . Figure 5 shows experimental

Fig. 4. The value of .=2hLV �2&LV& pLV as a function of the
product of liquid and vapor densities at coexistence: 1, water; 2,
cesium; 3, argon; 4, mercury.
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Fig. 5. Reduced value of .* on the saturation line as a function
of \*L \*V=(\L \V )�(\L \V )1 for various substances. The symbols
are the same as in Fig. 2.

values \*L \*V=(\L \V)�( \L \V)1, .*=.�.1 for the same substances as
those in Fig. 2 except mercury. Indeed, the universality of the multiplicative
relationship, Eq. (14), for the quantities 2hLV �2&LV, 2uLV �2&LV with the
exponent k=1.0 and amplitude D*=1.0, where D*=D.&1

1 (\L \V)k
1 , is

confirmed. Closer to the critical point, in the range 0.9<T� �1, the relation
between .* and \*L \*V may be described as

.*=ln(\*L \*V)r&2.5 (15)

at r=4.3. The behavior of this relationship for various substances is shown
in Fig. 6. As is evident from the figure, in the range 0.9<T� �1 one can
observe retention of universality in the behavior of .*(\*L \*V). The scatter
of points at T � Tc may be explained by the large uncertainty in the deter-
mination of the ratio 2hLV �2&LV in Eq. (13) in the immediate vicinity of Tc .
For comparison of Figs. 5 and 6 one should bear in mind the difference in
scales along the abscissa axis.

Our study has revealed simple universal relations, Eqs. (8) and (14),
between the saturation pressure or the ratio 2hLV �2&LV on the one hand
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Fig. 6. Relationship between the values of .* and \*L \*V=
(\L \V )�(\L \V )1 for various substances in the vicinity of the critical
point. The symbols are the same as in Fig. 2. The solid line
represents Eq. (15).

and the product of orthobaric densities of coexistent phases on the other
hand. The function ., defined by Eq. (13), may be presented in an equiv-
alent form .=T (2sLV �2&LV)& pLV=2uLV �2&LV . The other form of .
may be obtained if we use the Clausius�Clapeyron equation dp�dT=2s�2&.
In this case we can write

.=T \ dp
dT +LV

& pLV (16)

4. CONCLUSION

The universal relations elucidated in this paper can be used to evaluate
the product of orthobaric densities if the vapor pressure is known or to
evaluate the evaporation enthalpy by orthobaric densities on the saturation
line. Of course, a comprehensive quantitative comparison of the properties
of various substances with established correlations is still to be done. This

1221Universal Relations for Liquid-Vapor Phase Equilibrium



will make it possible, if necessary, to introduce certain corrections taking
into account subtle individual differences in thermodynamic properties of
substances. But, in essence, this problem requires additional investigation.

It may be assumed that the revealed universality is caused by the very
nature of a system with a large number of interacting particles (molecules)
with attractive and repulsive forces between them. This is supported by the
fact that even a simple allowance for these forces that is contained in the
Van der Waals equation results in a distinct relation between pLV , 2hLV

and the product \L \V . It should be noted that in Eq. (2) the quantity a�&2

has the meaning of the internal pressure of a fluid, therefore a�&L&V may be
called the effective internal pressure in phase equilibrium.
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